Research Area A

Frontiers of quantum sensors on ground

Research Area A develops new quantum sensors for application in geodesy, namely clocks and atomic gravity sensors, both in compact transportable and in large-scale stationary configurations.

Large-scale devices such as a new 10 m atom fountain VLBAI (Very Large Baseline Atom Interferometry) will enable experimental gravimetry with very high sensitivity. Transportable devices will be employed for observing temporal gravity and mass changes in regional campaigns, but the atom gravimeters have to be downsized considerably for field use. For this purpose, we develop chip-scale atomic gravimeters with BEC (Bose Einstein Condensate) atom sources.

The second building block of Research Area A is the operation and advancement of optical clocks and fibre connections to create clock networks. The measurement of relativistic gravitational redshift by optical clocks opens an entirely new toolbox with a height resolution beyond classical geodetic techniques.

Head of Research Area A

Prof. Dr. Ernst Rasel
Prof. Dr. Ernst Rasel

Publications Research Area A

Showing results 1 - 20 out of 21

Stolzenberg K, Struckmann C, Bode S, Li R, Herbst A, Vollenkemper V et al. Multi-axis inertial sensing with 2D arrays of Bose Einstein Condensates. 2024 Mar 13. Epub 2024 Mar 13.
Abend S, Allard B, Arnold AS, Ban T, Barry L, Battelier B et al. Technology roadmap for cold-atoms based quantum inertial sensor in space. AVS Quantum Science. 2023 Mar;5(1):019201. Epub 2023 Mar 20. doi: 10.1116/5.0098119
Delva P, Altamimi Z, Blazquez A, Blossfeld M, Böhm J, Bonnefond P et al. GENESIS: co-location of geodetic techniques in space. Earth, planets and space. 2023 Jan 11;75(1):5. doi: 10.1186/s40623-022-01752-w
Dörscher S, Klose J, Maratha palli S, Lisdat C. Experimental determination of the E2−M1 polarizability of the strontium clock transition. Physical Review Research. 2023 Feb 7;5(1):L012013. doi: 10.1103/PhysRevResearch.5.L012013
Elmaghraby A, Krawinkel T, Schön S, Piester D, Bauch A. On Error Modeling in GNSS-based Frequency Transfer: Effects of Temperature Variations and Satellite Orbit Repeat Times. In Proceedings of the 54th Annual Precise Time and Time Interval Systems and Applications Meeting: January 23 - 26, 2023 Hyatt Regency Long Beach Long Beach, California . 2023. p. 23-37. (Proceedings of the Annual Precise Time and Time Interval Systems and Applications Meeting, PTTI). doi: 10.33012/2023.18699
Jürss T, Grosche G, Koke S. Free-space interferometer design for optical frequency dissemination and out-of-loop characterization below the 10−21-level. Photonics research. 2023 Jun;11(6):1113-1124. Epub 2023 Apr 21. doi: 10.1364/prj.485899
Kermarrec G, Schön S. Common-clock GPS single differences: An improved correlation model for GPS phase observations based on turbulence theory. Advances in space research. 2023 Aug 15;72(4):1081-1093. Epub 2023 Jun 1. doi: 10.1016/j.asr.2023.05.042
Lezeik A, Tell D, Zipfel K, Gupta V, Wodey É, Rasel E et al. Understanding the gravitational and magnetic environment of a very long baseline atom interferometer. In CPT and Lorentz Symmetry: Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry. World Scientific. 2023. p. 64-68 Epub 2022 Sept 19. doi: 10.48550/arXiv.2209.08886, 10.1142/9789811275388_0014
Albers H, Corgier R, Herbst A, Rajagopalan A, Schubert C, Vogt C et al. All-optical matter-wave lens using time-averaged potentials. Communications Physics. 2022 Mar 16;5(1):60. doi: 10.48550/arXiv.2109.08608, 10.1038/s42005-022-00825-2
Belenchia A, Carlesso M, Bayraktar Ö, Dequal D, Derkach I, Gasbarri G et al. Quantum physics in space. Physics reports. 2022 Mar 11;951:1-70. Epub 2022 Jan 6. doi: 10.1016/j.physrep.2021.11.004
Bondza S, Lisdat C, Kroker S, Leopold T. Two-Color Grating Magneto-Optical Trap for Narrow-Line Laser Cooling. Physical review applied. 2022 Apr 1;17(4):044002. doi: 10.1103/physrevapplied.17.044002
Grotti J, Herbers S, Al-Masoudi AKA, Dörscher S, Koke S, Grosche G et al.. Chronometric leveling using a transportable strontium atomic clock. 2022. Poster session presented at American Geophysical Union (AGU) Fall Meeting 2022, Chicago, Illinois, United States.
Herbers S, Häfner S, Dörscher S, Lücke T, Sterr U, Lisdat C. Transportable clock laser system with an instability of 1.6 × 10-16. Optics letters. 2022 Oct 15;47(20):5441-5444. doi: 10.1364/OL.470984
Krawinkel T, Elmaghraby A, Schön S. Exploring the Technical Limits of GNSS-based Frequency Transfer. In Proceedings of the 53rd Annual Precise Time and Time Interval Systems and Applications Meeting. 2022. p. 188-198 doi: 10.33012/2022.18288
Schioppo M, Kronjäger J, Silva A, Ilieva R, Paterson JW, Baynham CFA et al. Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network. Nature Communications. 2022 Jan 11;13(1):212. doi: 10.1038/s41467-021-27884-3
Koke S, Benkler E, Kuhl A, Grosche G. Validating frequency transfer via interferometric fiber links for optical clock comparisons. New journal of physics. 2021 Sept 20;23(9):093024. doi: 10.1088/1367-2630/ac21a0
Krawinkel T, Schön S, Bauch A. Recent and Future Activities at Leibniz University Hannover in GNSS Frequency Transfer. In 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). IEEE. 2021. (Proceedings of the IEEE International Frequency Control Symposium). doi: 10.1109/EFTF/IFCS52194.2021.9604309
Lisdat C, Dörscher S, Nosske I, Sterr U. Blackbody radiation shift in strontium lattice clocks revisited. Physical Review Research. 2021 Dec 9;3(4):L042036. doi: 10.1103/physrevresearch.3.l042036
Pelzer L, Dietze K, Kramer J, Dawel F, Krinner L, Spethmann N et al. Tailored optical clock transition in 40Ca+. Measurement: Sensors. 2021 Dec;18:100326. Epub 2021 Sept 30. doi: 10.1016/j.measen.2021.100326
Schubert C, Abend S, Gersemann M, Gebbe M, Schlippert D, Berg P et al. Multi-loop atomic Sagnac interferometry. Scientific Reports. 2021 Dec;11(1):16121. Epub 2021 Aug 9. doi: 10.1038/s41598-021-95334-7